Primary myeloma cells growing in SCID-hu mice: a model for studying the biology and treatment of myeloma and its manifestations.
نویسندگان
چکیده
Progress in unraveling the biology of myeloma has suffered from lack of an in vitro or in vivo system for reproducible growth of myeloma cells and development of disease manifestations. The SCID-hu mouse harbors a human microenvironment in the form of human fetal bone. Myeloma cells from the bone marrow of 80% of patients readily grew in the human environment of SCID-hu mice. Engraftment of myeloma cells was followed by detectable human Ig levels in the murine blood. Myeloma-bearing mice had high levels of monotypic human Igs, high blood calcium levels, increased osteoclast activity, and severe resorption of the human bones. The human microenvironment was infiltrated with Epstein-Barr virus-negative monoclonal myeloma cells of the same clonality as the original myeloma cells. Active angiogenesis was apparent in areas of myeloma cell infiltration; the new endothelial cells were of human origin. We conclude that the SCID-hu mouse is a favorable host for studying the biology and therapy of myeloma and that a normal bone marrow environment can support the growth of myeloma cells.
منابع مشابه
Antimyeloma efficacy of thalidomide in the SCID-hu model.
To determine the mechanism of thalidomide's antimyeloma efficacy, we studied the drug's activity in our severe combined immunodeficiency-human (SCID-hu) host system for primary human myeloma. In this model, tumor cells interact with the human microenvironment to produce typical myeloma manifestations in the hosts, including stimulation of neoangiogenesis. Because mice are not able to metabolize...
متن کاملThe proliferative potential of myeloma plasma cells manifest in the SCID-hu host.
The low proliferative activity of myeloma plasma cells prompted the notion that the clonotypic B cells that exist in the blood and bone marrow of all myeloma patients contain the proliferative myeloma cells (stem cell). We have exploited our severe combined immunodeficiency (SCID)-hu host system for primary myeloma to investigate whether myeloma plasma cells are capable of sustained proliferati...
متن کاملMultiple Myeloma Update
This literature review presents the most recent developments in the management of multiple myeloma, which is characterized by the presence of abnormal plasma cells (myeloma cells) that accumulate into the bone marrow. Aspects related to pathophysiology, clinical manifestations, laboratory, study and treatment are described. These pieces of information are necessary to accomplish a better ...
متن کاملCD93 is Selectively Expressed on Human Myeloma Cells but Not on B Lymphocytes
Background: CD93 has originally been known as a C1q receptor, and many studies have demonstrated that CD93 is expressed on hematopoietic stem cells, B cell progenitors, myeloid and monocytic cells. Moreover, CD93 is shown to be expressed on long-lived plasma cells, and CD93 deficient-mice display an impairment in plasma cell development. Objective: To investiga...
متن کاملMultiple Myeloma Bone Marrow Mesenchymal Stromal Cells Inhibit CD8+ T Cell Function in a Process that May Implicate Fibroblast Activation Protein α
Background: Multiple myeloma (MM) is a malignant plasma cell proliferative disorder with limited immunotherapy treatment because of T cell dysfunction. Objective: To investigate the immunomodulatory function of bone marrow mesenchymal stromal cells (MM-BMSCs) on CD8+ T cells. Methods: Proliferation and cytotoxicity were detected by c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Blood
دوره 92 8 شماره
صفحات -
تاریخ انتشار 1998